

The material of the project reflects only the author's views. The European Commission's support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission or the Hellenic National Agency cannot be held responsible for any use which may be made of the information contained therein.

KA220-SCH - Cooperation partnerships in school education ID KA220-SCH-2C6FB0FE

Heatwaves Awareness Education through Online Learning (HEAT)

WP2 - Deliverable n. 2

Titolo:

Ricerca tecnica sulle ondate di calore e la progettazione urbana: Un inventario della letteratura per identificare

- a) le caratteristiche dell'ambiente urbano più suscettibili agli effetti delle ondate di calore
- b) soluzioni per la lotta contro le ondate di calore nel design urbano

Team di lavoro:

Manos Skoufoglou Apostolia Galani Evangelia Mavrikaki Eirini Chatzara Myrto Koutra -Heliopoulou Maria Christoforaki

Organizzazione leader: NKUA

Metodologia

Per identificare le caratteristiche dell'ambiente urbano che sono più suscettibili agli effetti delle ondate di calore e per proporre soluzioni di lotta contro le ondate di calore che si trovano nella progettazione urbana, abbiamo condotto un'intensa ricerca in letteratura.

Come parte della metodologia, abbiamo seguito una serie di passi per cercare e organizzare i risultati relativi alle ragioni che rendono un ambiente urbano sensibile alle ondate di calore.

Queste fasi sono descritte di seguito:

- 1. Selezione delle parole chiave: "città e ondate di calore", "isole di calore urbane".
- 2. Selezione dei motori di ricerca: Scopus, Taylor & Francis, Google Scholar.
- 3. Ambito temporale: La ricerca è stata limitata agli articoli pubblicati dal 2018 al 2023 incluso. In un caso, relativo alle superfici di acqua aperta, la ricerca è stata estesa ai cinque anni precedenti, a causa della relativa mancanza di letteratura rilevante recente.
- 4. Ambito geografico: Sebbene l'attenzione sia focalizzata sull'Europa, sono stati esaminati anche alcuni lavori provenienti da altre regioni (Cina, Asia orientale, Stati Uniti, Australia), perché la ricerca è più ricca in queste zone (poiché le ondate di calore costituiscono un fenomeno più massiccio) e le conclusioni sembrano avere validità universale.
- 5. Processo di selezione: Gli articoli sono stati classificati in base alla rilevanza. Tutti i motori di ricerca hanno restituito un numero eccessivo di articoli, da almeno 3.341 (Taylor & Francis) a più di 17.000 (Google Scholar). Tuttavia, non è stato possibile restringere ulteriormente le parole chiave, perché ciò si sarebbe basato su criteri arbitrari e avrebbe escluso materiale rilevante. Siamo quindi partiti da articoli di revisione, selezionando quelli incentrati sui fattori che influenzano l'intensità delle ondate di calore nelle città e/o sulle politiche e le misure per mitigare le isole di calore urbane. Si è poi proceduto con alcuni articoli citati nelle rassegne o che trattavano in modo più dettagliato aspetti individuati nelle rassegne. A un certo punto, le conclusioni tendevano a ripetersi e la ricerca si interrompeva quando un discreto numero di nuovi articoli non forniva nuovi elementi. Alla fine sono stati selezionati 36 articoli, in base a titolo, numero di citazioni, abstract, parole chiave, struttura e conclusioni.
- 6. Organizzazione dei dati: È stato creato un foglio di calcolo che comprende i seguenti documenti: titolo, rivista di pubblicazione, autori, data, categoria (revisione, studio di caso, modellazione/analisi quantitativa, analisi comparativa, politiche), area geografica di indagine, fattori indicati e misure/politiche proposte.

Analisi e classificazione dei risultati

Dopo l'organizzazione dei dati selezionati, i risultati relativi ai due parametri in esame (caratteristiche che influenzano la vulnerabilità delle aree urbane alle ondate di calore, soluzioni proposte) sono stati confrontati, controllati per verificare eventuali sovrapposizioni, raggruppati e classificati secondo una tassonomia ritenuta adatta al

nostro obiettivo. Tra i diversi termini per descrivere gli stessi fattori o le stesse soluzioni, sono stati selezionati quelli più completi, senza mancare di precisione.

1. I fattori indicati contribuiscono alla vulnerabilità delle ondate di calore urbane:

I fattori che influenzano l'intensità delle ondate di calore nelle aree urbane sono stati classificati secondo la tabella:

Fattori indicati relativ	i alle ondate di calore nelle aree	Referenze
Struttura e morfologia urbana	urbane Area urbana/dimensione	Florenzio et al. 2022, Deilami et al. 2018
	Densità edificata	Florenzio et al. 2022, et al. 2021, Deilami et al. 2018, He Y. et al. 2018, Yang et al. 2019b
	Altezza degli edifici	He B-J. et al. 2019, Yang et al. 2019b, Nwakaire et al. 2020
	Rapporto di aspetto (altezza/larghezza) delle strade	Merlier et al. 2018
	Densità della superficie frontale	Yang et al. 2019a, Yang et al. 2019b
	Modello di strada	He Y. et al. 2018, He B-J. et al. 2019
	Dimensione della griglia	Yang et al. 2019a
	Compattezza	Deilami et al. 2018, He B-J. et al. 2019
Tasso di urbanizzazione	Popolazione urbana	Deilami et al. 2018
	Tasso di espansione urbana	Deilami et al. 2018, Ulpiani 2020
	Intensità di sviluppo urbano	Deilami et al. 2018
Superficie urbana e materiali	Toppe urbane sigillate	Florenzio et al. 2022
	Composizione della superficie	Deilami et al. 2018, Nwakaire et al. 2020
	Porosità	Florenzio et al. 2022, Tayyebi & Jenerette 2018, Deilami et al. 2018
	Albedo delle superfici antropiche	Burbidge et al. 2021, Deilami et al. 2018, Nwakaire et al. 2020
	Umidità del suolo	Deilami et al. 2018
	Superfici d'acqua libere	Deilami et al. 2018, Steeneveld et al. 2014
Vegetazione	Area di vegetazione	Tayyebi & Jenerette 2018, Deilami et al. 2018
	Differenza normalizzata Indice di vegetazione	Tayyebi & Jenerette 2018
Clima e geografia	Paesaggio	Deilami et al. 2018

Distanza dal mare Tayyebi & Jenerette 2018 Tipo di clima Deilami et al. 2018, Nwakaire
Tipo di clima Deilami et al. 2018, Nwakaire
et al. 2020
Venti He B-J. et al. 2019
Ondate di calore (intensità, Deilami et al. 2018, Nwakaire frequenza, variazione stagionale) et al. 2020
Condizioni infraurbane Zone climatiche locali Yang et al. 2019b, Yang et al. locali 2020
Vicinanza al centro città Kyriakopoulos et al. 2022
Distanza dalla costa Kyriakopoulos et al. 2022 Orientamento stradale Jamei Rajagopalan 2018
Geometria degli edifici Merlier et al. 2018
Condizioni sociali ed Uso del suolo Deilami et al. 2018, Nwakaire economiche et al. 2020
Trasporti Deilami et al. 2018, Nwakaire et al. 2020
Metabolismo urbano Nwakaire et al. 2020
Calore di scarto Burbidge et al. 2021, Nwakaire et al. 2020
Inquinamento Ulpiani 2020
Politiche e strategie Szpak 2020

2. Soluzioni proposte:

Le misure e le politiche urbane per affrontare le ondate di calore sono state selezionate e classificate secondo la tabella:

Misure	e politiche proposte	Referenze
Progettazione urbana	Progettazione della rete stradale	He Y. et al. 2018, Balany et al. 2020
	Rapporto di aspetto (altezza/larghezza) delle strade	Balany et al. 2020
	Vuoti urbani	Roggema 2018
	Design sollevabile	Du et al. 2017
	Ventilazione naturale	Song et al. 2018, Deilami et al.
	Progettazione urbana/architettonica	2018, He B-J. et al. 2019
Infrastruttura verde	Parchi urbani	Burbidge et al. 2021, Deilami et al. 2018, Hintz et al. 2018, Balany et al. 2020, Degirmenci et al. 2021, Kong et al. 2021, Nwakaire et al. 2020
	Alberi e arbusti stradali	Deilami et al. 2018, Hintz et al. 2018, Balany et al. 2020, Kong

		et al. 2021, Nwakaire et al.
		2020
	Giardini privati	Deilami et al. 2018
	Tetti e facciate verdi	Clar & Steurer 2021, Meerow & Keith 2021, Deilami et al.
		2018, Hintz et al. 2018, Balany
		et al. 2020, Mihalakakou et al.
		2023, Kong et al. 2021,
	Barrage to a second second by	Nwakaire et al. 2020
	Progettazione e specie vegetali adeguate	Daniel et al. 2018, Rahman et al. 2018
Infrastruttura blu	Corpi idrici	Meerow & Keith 2021,
		Deilami et al. 2018, Hintz et al.
	Irrigazione	2018, Degirmenci et al. 2021 Kong et al. 2021
	Fornitura di acqua pubblica	Hintz et al. 2018
	Irrigazione della pavimentazione	Hintz et al. 2018, Daniel et al. 2018
Infrastruttura grigia	Materiali freschi e superfighi	Pour et al. 2019, Deilami et al.
		2018, Wang et al. 2021, Hintz
		et al. 2018, Santamouris &
		Yun 2020, Degirmenci et al.
		2021, Kong et al. 2021, Nwakaire et al. 2020
	Ombra artificiale	Meerow & Keith 2021
	Isolamento	Hintz et al. 2018
	Ventilazione meccanica	Hintz et al. 2018
	Ristrutturazione di vecchi edifici	Hintz et al. 2018
	Finestre riflettenti o	Hintz et al. 2018
	ombreggianti	
Pianificazione e	Regolamenti sull'uso del suolo	Meerow & Keith 2021,
politiche urbane	5	Parsaee et al. 2019
	Distribuzione della popolazione	Yang et al. 2019
	Ripartizione modale dei trasporti	Nwakaire et al. 2020
	Regolamenti di costruzione	Hatvani-Kovacsa et al. 2018
	Controllo del calore di scarto	Meerow & Keith 2021
	Regolamenti in materia di riscaldamento, ventilazione e	Hatvani-Kovacsa et al. 2018
	condizionamento dell'aria Partecipazione pubblica e	Burbidge et al. 2021, Parsaee
	autogestione	et al. 2019
	Educazione/consapevolezza	Hintz et al. 2018, Parsaee et al. 2019
Strategie di gestione	Sistemi di allarme	Meerow & Keith 2021
	Piani di emergenza	Meerow & Keith 2021
	Servizi di sanità pubblica	Hatvani-Kovacsa et al. 2018
	Controllo del consumo	Hintz et al. 2018
	energetico	_
	Centri di raffreddamento	Meerow & Keith 2021
	Fontanelle	Meerow & Keith 2021

Metodologia Approccio olistico Wang 2022

Modelli e simulazioni Luo et al. 2022

Adattamento alle zone climatiche Yang et al. 2019b

Una breve sintesi dei risultati

La maggior parte delle ricerche si concentra sulla struttura o morfologia urbana, sui materiali urbani e sugli elementi naturali delle città.

I fattori della struttura e della morfologia urbana sono per lo più legati alla ventilazione e all'ombreggiamento. Tra questi, alcuni hanno un chiaro contributo all'intensità delle ondate di calore (ad esempio, grandi aree urbane combinate con alte densità, aree frontali ininterrotte, schemi stradali troppo complicati), mentre altri sembrano avere effetti contraddittori: ad esempio, edifici troppo alti possono inibire una corretta ventilazione, ma edifici troppo bassi possono avere un effetto negativo sull'ombreggiamento. A livello macro, si ritiene che anche le dinamiche urbane, come il tasso di espansione urbana, contribuiscano alla vulnerabilità alle ondate di calore.

I materiali urbani sono principalmente legati alla capacità termica delle superfici. È evidente che due particolari attributi sono correlati positivamente con la mitigazione degli effetti delle ondate di calore: l'elevata albedo (cioè la riflettività solare) delle superfici e degli involucri degli edifici e l'elevata porosità dei materiali del suolo.

Si ritiene che la vegetazione abbia un effetto positivo sulla mitigazione delle isole di calore urbane, ma ciò dipende anche dalla corretta pianificazione, dalle specie e dallo stato di salute di alberi, arbusti ed erba (come misurato dall'indice di vegetazione differenziale normalizzato). Anche le superfici d'acqua aperte svolgono un ruolo positivo, in quanto l'evaporazione dell'acqua assorbe il calore e aumenta l'umidità dell'aria (che, combinata con la ventilazione, può aumentare il senso di fresco), sebbene i corpi idrici profondi possano avere un effetto contraddittorio a causa della loro elevata capacità termica, che può ritardare il raffreddamento durante la notte.

Gli studi che correlano le isole di calore urbane con le caratteristiche geografiche o climatiche sono piuttosto limitati, perché questi fattori sono principalmente soggetti alla geografia fisica piuttosto che a quella urbana.

Un'altra serie di studi si concentra sul livello infraurbano, cioè sulla differenziazione delle condizioni all'interno del tessuto urbano: ad esempio, la vicinanza al mare è ampiamente riconosciuta come un fattore di mitigazione delle ondate di calore, mentre il contrario vale per la vicinanza al centro città. L'orientamento delle strade influisce sia sulla ventilazione (in base alla direzione del vento locale prevalente) sia sull'ombreggiamento (le strade da ovest a est sono più esposte alla luce solare rispetto a quelle da nord a sud).

Infine, vi sono alcuni approcci che si concentrano su fattori legati all'attività umana nelle città. Ciò potrebbe riguardare la vita nelle città (con fattori quali un'elevata attività industriale, l'inquinamento o un'alta percentuale di trasporti privati che deteriorano

chiaramente le condizioni di calore urbano) o le politiche urbane per affrontare i cambiamenti climatici e le ondate di calore, in particolare.

Le soluzioni proposte, ovviamente, corrispondono ai fattori indicati. In generale, si dividono in due grandi categorie: mezzi per affrontare le cause delle isole di calore urbane e strategie per gestirne gli effetti. In quest'ultimo caso, la letteratura è più pertinente alla gestione delle crisi che agli studi urbani o all'architettura, anche se, ad esempio, nel caso dell'assegnazione di centri di raffreddamento o della fornitura di fontanelle pubbliche, i due campi si sovrappongono.

In primo luogo, gli standard di progettazione urbana e architettonica sono essenziali, perché difficilmente possono incidere sull'ambiente già edificato e sono per lo più destinati alla futura espansione urbana o, al massimo, a progetti di rinnovamento locale. D'altra parte, la pianificazione urbana, nel senso più generale del termine, che comprende regolamenti e politiche urbane, usi del suolo, trasporti, eccetera, si suppone sia essenziale sia per le aree urbane esistenti sia per le espansioni future. Alcuni ricercatori sottolineano il ruolo dell'istruzione, che rientra nell'interesse particolare del nostro progetto.

A una scala inferiore, la ricerca si concentra su quelle che vengono definite infrastrutture verdi, blu e grigie. Le infrastrutture verdi riguardano la vegetazione, quelle blu i corpi idrici e l'irrigazione, mentre quelle grigie i materiali artificiali per mitigare gli effetti del calore all'esterno (pavimentazioni, ombreggiature artificiali) o all'interno (isolamento e ventilazione degli edifici, finestre, ecc.). I materiali di superficie freddi e superfreddi, che comprendono un ampio spettro di innovazioni hightech, occupano gran parte della letteratura di questa categoria. Rispetto alla progettazione o alla pianificazione urbana, le politiche di infrastrutture verdi, blu o grigie hanno il vantaggio dell'applicabilità diretta, anche se è ragionevole aspettarsi che abbiano effetti meno universali di un processo radicale di riprogettazione urbana.

Infine, un numero minore di articoli si occupa di questioni metodologiche.

Osservazioni critiche sui risultati

Nonostante i risultati e le conclusioni interessanti, la ricerca sulle caratteristiche dell'ambiente urbano legate alle ondate di calore e sulle possibili soluzioni alle ondate di calore urbano sembra mancare di una visione olistica. I diversi fattori sembrano essere esaminati in modo autonomo, con una limitata preoccupazione di combinarli o di confrontarne l'impatto. Nel migliore dei casi, viene semplicemente elencata una serie di fattori. Ciò rende difficile valutare il peso relativo dei diversi parametri.

Inoltre, la ricerca e la letteratura in materia si limitano spesso a una discussione tecnica, evitando un approccio critico. Questo può portare a non considerare gli effetti contraddittori che alcuni fattori o soluzioni potrebbero avere, non tenendo conto delle conseguenze dirette e indirette: ad esempio, si ritiene che la compattezza del tessuto urbano aumenti il calore urbano, ma una città compatta potrebbe allo stesso tempo significare una minore dispersione urbana incontrollata, che a sua volta potrebbe comportare una maggiore qualità della vegetazione periurbana e degli standard ambientali, con effetti benefici anche per il nucleo urbano. Soprattutto, gli approcci tecnici spesso non integrano i fattori economici, sociali e politici che sono cruciali per la comprensione delle strutture e delle funzioni urbane, delle isole di calore urbane e

dei cambiamenti climatici in generale. Pertanto, sarebbe probabilmente necessario un approccio più olistico, combinato e critico per affrontare il problema.

Code	Journal	Paper title	Writer	Date	Category	Geograph ical Area	Indicated factors	Proposed policies
1	Building	Natural	Jiyun Song, S.	28 Jun 2018		London	Ventilation, Urban form	
	Research &	ventilation in	Fan, W. Lin,		paper			
	Information 46	cities: the	L. Mottet, H.					
	(8)	implications of	Woodward,					
		fluid mechanics	M. Davies					
			Wykes, R.					
			Arcucci, D.					
			XiaoE.					
			Debay, H.					
			ApSimon, E.					
			Aristodemou					
			, D. Birch, M.					
			Carpentieri,					
			F. Fang, M.					
			Herzog, G. R.					
			Hunt,R. L.					
			Jones, C.					
2	Journal of	The role of	N. Florenzio,	26 May	Comparati		Urban morphology (size, sealed	
	Environmental	urban planning	G. Guastell,	2022	ve analysis		urban patches, built-up	
	Planning and	in climate	F. Magni, S.				density, porosity)	
	Management	adaptation: an	Pareglio & F.					
		empirical	Musco					
		analysis of UHI						
		in European						
3	European	Climate change	Agnieszka	31 Mar	Comparati	Warsaw/	climate change strategies	
	Planning Studies	_	Szpak	2020	ve analysis	Krakow/P		
	29 (3)	plans in Polish	- 1			oznan		
		cities –						
		comparative						

4	International	Characteristics	Panagiotis	30 Aug	Case study	Kalamata	Proximity to the city centre,	
	Journal of	of the urban	Kyriakopoulo	2022			Distance from the sea	
	Sustainable	heat island	s, Yannis G.					
	Energy 41(11)	effect in the	Caouris,					
		coastal	Manolis					
		Mediterranean	Souliotis &					
		citv of	Mattheos					
5	European	Airborne	Tomáš Pour,	08 Jan 2019	Case study	Olomouc		Natural materials
	Journal of	thermal remote						
	Remote Sensing	sensing: the	Miřijovský &					
	52	case of the city	Tomáš Purket					
		of Olomouc,						
		CzechRepublic						
6	Journal of	A data schema	Na Luo,Xuan	09 Nov	Modelling			Coupled
	Building	for exchanging	Luo,	2022	/quantitat			simulation: urban
	Performance	information	Mohammad		ive			building energy
	Simulation	between urban	Mortezazade		analysis			models and urban
		building	h, Maher					microclimate
		energymodels	Albettar,					models
		and urban	Wanni					
		microclimate	Zhang,					
		modelsin	Dongxue					
		coupled	Zhan,Liangzh					
7	Architectural	Design with	Rob Roggema	27 Jul 2018	Policies	Almere,		Urban voids,
	Science Review	voids: how				Sydney		Inverted
	61	inverted						urbanism
		urbanism can						
		increase urban						
		resilience						

8 Local	Don't blame it	Manon	23 Nov	Case study	Antwerp	Solar reflectivity of human-	Resident managed
Environme	nt 27 on the	Burbidge, T.	2021			made surfaces, Waste heat	parks
	sunshine! An	Smith				energy generated by high	
	exploration of	Larsen, S.				building densities	
	the	Feder & S.					
	spatialdistribut	Yan					
	ion of heat						
	injustice across						
9 Journal of l	Jrban Climate change	Christoph	08 Mar	Policies	Copenhag		Suitable green
Affairs 45	adaptation	Clar &	2021		en,		roof policies
	with green	Reinhard			Hamburg,		
	roofs:	Steurer			Vienna		
	Instrument						
	choice and						
	facilitating						

10	Journal of the	Planning for	Sara Meerow	08 Dec	Comparati	US cities		Heat mitigation
	American	Extreme Heat, A	& Ladd Keith	2021	ve analysis			strategies (Land
	Planning	National Survey						use regulations,
	Association 88	of U.S. Planners						Urban design,
								Urban greening,
								Manmade shade,
								Water features,
								Green roofs,
								Appropriate
								building
								materials, waste
								heat
								management),
								Management
								strategies
								(Emergency
								response,
								Warning
								systerms,
								Drinking
								Fountains, Utility
								assistance, Info &
								awareness,
								Cooling centres,
								Vulnerability
								assessments, Staff)
11	International	Assessing diel	Amin Tayyebi	7 Feb 2018	Modelling	California	Distance to coast, NDVI,	
	Journal of	urban climate	& G. Darrel		/Quantitat		Vegetation, Impervious surface	
	Remote Sensing	dynamics using	Jenerette		ive			
	39	a land surface			analysis			
		temperature						
		harmonization						
		model						

12	Architectural	Effect of street	Elmira Jamei	15 Nov	Case study	Melbourn	Street orientation	
	Science Review	design on	&	2018		е		
	62	pedestrian	Priyadarsini					
		thermal	Rajagopalan					
		comfort						
13	International	Urban heat	Kaveh Deilam	May 2018	Review		Area/percentage of vegetation,	High-albedo
	Journal of	island effect: A	i, Md. Kamru				UHI seasonal variation, Urban	materials, Green
	Applied Earth	systematic	zzaman				area, UHI day/night variation,	strategies (urban
	Observation and	review of spatio-	& Yan Liu				Population, Proportion of	forests/parks,
	Geoinformation	temporal					waterbody, Percentage of	street trees,
	67	factors, data,					road/pavement, Biophysical	private green in
		methods, and					components, Impervious	gardens, green
		mitigation					surface, ground surface albedo,	roofs or facades),
		measures					Social and economic valiables,	Improving urban
							Landscape metric/ecology,	ventilation,
							Density of buildings, Bare soil,	Waterbodies
							Soil moisture, Normalized	
							multi-band drought index,	
							Elevation, Urban expansion	
							rate, Urban compactness	
							ration, Area of forest,	
							Agricultural area, Porosity,	
							Precipitation/humidity, Fallow	
							land, Number of private/public	
							vehicles, 3D characteristics of	
							cities, Urban development	
							intensity, Residential area,	
							Industrial area, Surface energy	
							flux	

14	Renewable and	Cool	Chenghao	Aug 2021	Review			Cool pavements
	Sustainable	pavements for	Wang, Zhi-					reflective,
	Energy Reviews	urban heat	Hua Wang,					permeable,
	146	island	Kamil E.					innovative
		mitigation: A	Kaloush &					
		synthetic	Joseph					
		review	Shacat					
15	Sustainable	Derivation of	Lucie	Jan 2018	Review		Urban forms: urban roughness	
	Cities and	generic	Merlier,				(canopy heterogeneity, relative	
	Society 36	typologies for	Frédéric				dimentions), urban	
		microscale	Kuznik, Gilles				permeability (connectedness,	
		urban airflow	Rusaouën &				geometry)	
		studies	Serge Salat					
16	Building and	Effects of lift-up	Yaxing Du,	May 2017	Quantitati	Hong		Lift-up design
	Environment	design on	Cheuk Ming	', '	ve analysis			
	117	pedestrian level	_		,			
		wind comfort	Liu, Qian Xia,					
		in different	Jianlei Niu &					
		building	K.C.S. Kwok					
		configurations						
		under three						

17	Urban Climate	Effects of non-	Yueyang He,	Jun 2018	Case study	Singapore	Breezeways (density,	Appropriate road
	24	uniform and	AbelTablada				morphology)	network design
		orthogonal	& Nyuk Hien					
		breezeway	Wong					
		networks on						
		pedestrian						
		ventilation in						
		Singapore's						
		high-density						
		urban						
		environments						
18	Sustainable	Enhancing	Bao-Jie He,	May 2019	Case study	Sydney	Urban typology (building	Ventilation
	Cities and	urban	Lan Ding &				heights, street pattern,	performance-
	Society 47	ventilation	Deo Prasad				compactness), external	based planning
		performance					meteorological conditions	
		through the					(synoptic wing,	
		development of					katabatic/anabatic wind,	
		precinct					breeze, wind speed, wind	
		ventilation					direction)	
		zones: A case						
		study based on						
		the Greater						
		Sydney,						
		Australia						

19	Urban Climate	Facing the heat:	Marie	Jun 2018	Review		Green and Blue
	24	A systematic	Josefine	34.1.2010			infrastructure
		literature	Hintz,				(Greenery and
		review	Christopher				shade, water
		exploring the	Luederitz,				bodies, green
		transferability	Daniel J.				roofs, mapping of
		of solutions to	Langa &				urban vegetation,
		cope with	Henrik von				public water
		urban heat	Wehrden				supply), grey
		waves					infrastructure
							(insulation,
							renovation of old
							houses, cooling-
							roofs, high albedo
							material, lower
							peak electricity
							power, natural
							and mechanical
							ventilation of
							buildings,
							reflective or
							shading windows,
							pavement
							watering),
							behaviour of
							inhabitants

20	Water 12 (12)	Green	Fatma	20 Dec	Review		Green
		Infrastructure	Balany, Anne	2020			infrustructure
		as an Urban	WM Ng, Nitin				(trees, grass,
		Heat Island	Muttil,				shrubs, green
		Mitigation	Shobha				roofs, green walls,
		Strategy—A	Muthukumar				park), Urban
		Review	an & Man				materials, Aspect
			Sing Wong				Ratio
							(Hight/width of
							streets), Street
							Orientation

21	Renewable and	Green roofs as a	Giouli	Jul 2023	Review		Green roofs
	Sustainable	nature-based	Mihalakakou,				
	Energy Reviews	solution for	Manolis				
	180	improving	Souliotis,				
		urban	Maria				
		sustainability:	Papadaki,				
		Progress and	Penelope				
		perspectives	Menounou,				
			Panayotis				
			Dimopoulos,				
			Dionysia				
			Kolokotsa,				
			John A.				
			Paravantis,				
			Aris				
			Tsangrassouli				
			s, Giorgos				
			Panaras,				
			Evangelos				
			Giannakopou				
			los & Spiros				
			Papaefthimio				
			u				

22	Sustainable Cities and Society 47	Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and windsensitive planning proposal in megacities	Xiao, Cui Jin, Jianhong (Cecilia) Xia, Xueming Lia & Shijun	May 2019	Case study	Shanghai	Urban architectural patterns (High-density high-rise buildings, Frontal Area Density) correlated with different climate zones	Adaptation of urban planning and regulations to different climate zones
23	Science of the Total Environment 751	On the linkage between urban heat island and urban pollution island: Threedecade literature review towards a conceptual framework	Giulia Ulpiani	10 Jan 2021	Review		Pollution and factors affecting it: Temperature-dependent chemistry and daytime-nighttime variability (climate type and source of pollution), Urban geomorphic types, Urban forms, urban growth and inter-urban connection	

24	Journal of	Optimizing	Jun Yang,	Dec 2020	Quantitati	Dalian	Local climate zones	Optimum
	Cleaner	local climate	Yichen Wang,		ve analysis			population
	Production 275	zones to	Chunliang					distribution
		mitigate urban	Xiu,					within the city
		heat island	Xiangming					
		effect in human	Xiao,					
		settlements	Jianhong Xia					
			(Cecilia) &					
			Cui Jin					
25	Urban Climate	Policy	Gertrud	Sep 2018	Policies	Australia		Policy measures:
	25	recommendati	Hatvani-					public health
		ons to increase	Kovacsa,					services, building
		urban heat	Judy Bush,					and construction
		stress resilience						industry
			& John					(regulations on
			Boland					building energy-
								efficiency and
								heat stress
								resistance), urban
								planning,
								infestructure,
								services & utilities

26	Renewable	Recent	M.	Dec 2020				Cool and super
	Energy 161	development	Santamouris					cool materials
	o,	and research	& Geun					(natural and
		priorities on	Young Yun					conventional,
		cool and super						white coatings of
		cool materials						higher
		to mitigate						reflectance,
		urban heat						coloured coatings
		island						reflecting in the IR
								spectrum, IR
								reflecting surfaces
								doped wit phase
								changr materials,
								temperature
								induced colour
								changing
								materials,
								fluoriscent
								materials,
								innovative
								radiative cooling
								structures, other)
27	Landasana av -l	Defue de la cratica	C 1	lan 2014	Ougatite!	Nathaul - :-	On an austra auriforna	
27	Landscape and	Refreshing the	G.J.	Jan 2014	Quantitati		Open water surfaces	
	Urban Planning 121	role of open water surfaces	Steeneveld,		ve analysis	as		
	121		S. Koopmans, B.G.					
		on mitigating the maximum	Heusinkveld					
		urban heat	& N.E.					
		island effect	Theeuwes					
		isialiu ellect	ineeuwes					

28	Urban Climate 23	Role of watering practices in large-scale urban planning strategies to face the heat- wave risk in future climate	M. Daniel, A.Lemonsu & V.Viguié	Mar 2018	Modelling /Quantitat ive analysis	Paris		Appropriate vegetation and pavement watering
29	Urban Climate 28	Spatial differentiation of urban wind and thermal environment in different grid sizes	Jun Yanga, Yichen Wang, Xiangming Xiao, Cui Jin, Jianhong (Cecilia) Xia & Xueming Li	Jun 2019	Quantitati ve analysis	China	Grid size, Frontal area Index	
30	Building and Environment 170	Traits of trees for cooling urban heat islands: A meta- analysis	Mohammad A. Rahman, Laura M.F. Stratopoulos , Astrid Moser- Reischl, Teresa Zölch, Karl-Heinz Häberle, Thomas Rötzer, Hans Pretzsch & Stephan Pauleit	Mar 2020	Review			Appropriate planting design and tree species

31	Sustainable	Understanding	Kenan	Jul 2021	Review		Policy responses
] 31	Cities and	policy and	Degirmenci,	Jul 2021	Review		(Landscape &
	Society 70	technology	Kevin C.				Urban Form,
	Society 70	responses in	Desouza,				Green & Blue area
		mitigating	Walter				ratio, Albedo
		urban heat					enhancement
			Fieuw, Richard T.				
		islands: A					policies,
		literature	Watson &				Transport modal
		review and	Tan				split, Public
		directions for	Yigitcanlar				Health &
		future research					Participation),
							Technology
							responces (Green
							Building
							Envelopes, Cool
							Surfaces,
							Sustainable
							Transport, Energy
							consumption,
							HVAC & waste
							Heat)
32	Sustainability 13		Jing Kong,	30 Sep 2021	Review		High Albedo, High
	(19)	Island and Its	Yongling				Vegetation
		Interaction	Zhao, Jan				Coverage,
		with	Carmeliet &				Irrigation
		Heatwaves: A	Chengwang				
		Review of	Lei				
		Studies on					
		Mesoscale					

33	Sustainable Cities and Society 63	Urban Heat Island Studies with emphasis on urban pavements: A review	Chidozie Maduabuchu kwu Nwakaire, Chiu Chuen Onn, Soon Poh Yap, Choon Wah	Dec 2020	Review	Antropocentric Sources (Metabolism, Heating, Air conditioning, Manufacturing, Transportation), Structural Sources (Surface composition, Pavements, Buildings, Urban Canyon), Climatic Sources (Precipitation, Heat waves)	Vegetative Covers and wetlands, Cool Roofs, Public Transport, Sustainable Materials (Innovative pavements)
34	Environmental	Urban heat	Yuen & Peter Dinwoke Onodagu Mojtaba	May 2019	Review		Active
	Technology & Innovation 14	island, urban climate maps and urban development policies and action plans	Parsaee, Mahmood Mastani Joybari, Parham A. Mirzaei & Fariborz Haghighat	·			involvement in Urban Development Policioes/Action Plans, Urban managerial as well as governmental actions, Public engagement and participation.

35	Sustainable Cities and Society 69	Integration of topological aspect of city terrains to predict the spatial distribution of urban heat island using GIS and ANN	Victor Equere, Parham A. Mirzaei, Saffa Riffat & Yilin Wang	Jun 2021	Modelling /Quantitat ive analysis	Illinois	Land surface elevation, Other morphological parameters	
36	Sustainable Cities and Society 77	Reconceptualiz ing urban heat island: Beyond the urban-rural dichotomy	Zhi-Hua Wang	Feb 2022	Policy	IIIIIOIS		The embedment of thermal condition in more holistic urban environmental indicators, Putting planners of local cities into broader contexts informed by the development of decision-making processes historically and spatially, Avoiding onesidedness of urban planning in segregated departments